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We present a new formulation of the motion of a flexible body with a vortex-sheet
wake and use it to study propulsive forces generated by a flexible body pitched
periodically at the leading edge in the small-amplitude regime. We find that the thrust
power generated by the body has a series of resonant peaks with respect to rigidity,
the highest of which corresponds to a body flexed upwards at the trailing edge in
an approximately one-quarter-wavelength mode of deflection. The optimal efficiency
approaches 1 as rigidity becomes small and decreases to 30-50 % (depending on pitch
frequency) as rigidity becomes large. The optimal rigidity for thrust power increases
from approximately 60 for large pitching frequency to oo for pitching frequency
0.27. Subsequent peaks in response have power-law scalings with respect to rigidity
and correspond to higher-wavenumber modes of the body. We derive the power-law
scalings by analysing the fin as a damped resonant system. In the limit of small driving
frequency, solutions are self-similar at the leading edge. In the limit of large driving
frequency, we find that the distribution of resonant rigidities ~k—>, corresponding to
fin shapes with wavenumber k. The input power and output power are proportional
to rigidity (for small-to-moderate rigidity) and to pitching frequency (for moderate-
to-large frequency). We compare these results with the range of rigidity and flapping
frequency for the hawkmoth forewing and the bluegill sunfish pectoral fin.

1. Introduction

In many problems of fish swimming and bird and insect flight, propulsive force
is obtained by periodic motion of a slender body or appendage (Lighthill 1969;
Childress 1981). The body moves in a fluid which is approximately incompressible
and which has small dimensionless viscosity (large Reynolds number). Such motions
generate sharp concentrations of vorticity which separate from the body and roll
up in the fluid, forming a trailing wake of coherent vortices behind the body. The
vortices carry fluid momentum, the temporal rate-of-change of which coincides with
a forward thrust on the body.

The thrust force and strength of generated vorticity can be calculated in terms of
the motion of the body. Many previous studies have calculated the thrust generated
by prescribed motions of a rigid or deformable body in a high-Reynolds-number
incompressible fluid (Lighthill 1960; Wu 1961; Sparenberg 2002). If the body is
flexible, it is deformed by the fluid forces on it, and its motion is not prescribed but
is instead determined together with that of the ambient fluid as a coupled dynamical
system. These deformations are important in the locomotion of many swimming and
flying organisms.
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In these coupled flow—body systems, the body motion may be ‘active’ (set by
(1) embedded controlled muscles together with (2) internal elastic forces and (3)
forces from the external environment) or ‘passive’ (determined by (2) and (3) alone).
Advantages of passive motions are: (i) simplicity — they do not require complex
control strategies for the muscles and (ii) efficiency — they do not require the additional
mechanical work for muscular control. Many recent studies of locomotion approach
the dynamics and control of locomotory systems from the starting point of passive
systems and ask: what dynamics arise naturally from fluid—body interactions with
limited or no control? (Vandenberghe et al. 2004; Alben & Shelley 2005; Childress,
Vandenberghe & Zhang 2006; Fish & Lauder 2006; Bergou, Xu & Wang 2007).

The purpose of this study is to investigate the effect of flexibility on propulsion
by a flapping appendage. We focus on a simple body (such as a tail fin or bird or
insect wing) driven periodically by a pitching motion at the leading edge. We study
the thrust force and efficiency as a function of two dimensionless parameters: the
reduced driving frequency at the leading edge and the flexibility of the body.

This study is inspired by a large class of swimming modes where the tail is
the dominant source of propulsion. In order of both increasing concentration at
the tail, and increasing stiffness of the tail, these motions are: the Subcarangiform,
Carangiform, Thunniform and Ostraciiform modes (Lighthill 1969). Such modes
involve a relatively straight portion of the body, followed by a more flexible trailing
portion of the body and tail fin which oscillates or undulates periodically. Body
motions are driven by the contraction of muscles on either side of the backbone.
Tail motions are driven by separate muscles in the body which exert a force through
tendons onto the leading edges of the tail. These tendons attach onto a scaffold of
flexible fin rays which support the tail (Videler 1993).

For slender fish, the flow passing backwards from the straight portion of the body
will be nearly as uni-directional as that far upstream. Hence, for simplicity we omit
the straight upstream portion of the body and consider a ‘disembodied’ flexible tail
whose leading edge encounters the upstream fluid directly. The method given here
can also be used to consider the effect of a straight body segment of varying length
placed in front of the tail.

Bainbridge (1963) made diagrams of the kinematics of the tail fin of a swimming
dace, and measured the curvature patterns in time. He conjectured a function for the
curvature based on steady airfoil theory — that it leads to a forward thrust which is
more steady in time than for a rigid plate with the same motion at the leading edge.
Curvature also enhances lift forces on airfoils (Thwaites 1987). However, an unsteady
model is more appropriate because the flapping frequency non-dimensionalized by
U/L (swimming speed U, length L) is not small.

Prempraneerach, Hover & Triantafyllou (2003) studied experimentally the efficiency
and forward thrust generated by rubber airfoils driven in a steady stream. For five
flexible foils of varying rigidity, they studied a few sets of kinematic parameters which
were previously found to give good performance for rigid foils (Triantafyllou et al.
1991, 2000). Propulsive efficiency for the flexible foils increased by up to 36 % over
the rigid foils, and the maximum thrust coefficient also increased.

Combes & Daniel (2003a) measured the bending rigidity of hawkmoth and
dragonfly insect wings as a function of distance along the chord and span of the wing.
The spatial distribution of bending rigidity was strongly non-uniform, decreasing by
more than a factor of 10 from the leading to the trailing edge along the chord, with
a similar decrease moving outward along the span. The distribution of rigidity was
well-fitted by an exponential. The spanwise stiffness was much greater than chordwise
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stiffness, so that the primary bending mode is along the chord. Combes & Daniel
(2003b) used these material parameters as inputs to a finite element model with
typical kinematics imposed at the wing root and found significant bending of the
model wing.

In the realm of fish swimming, Lauder et al. (2006) and Alben, Madden & Lauder
(2007) measured the rigidity of fin rays taken from the pectoral fin of Bluegill sunfish.
These rays are the primary structural support of the fin. Here too, a strong decay of
rigidity was found, moving outward along the ray from its juncture with the fish body
to the distal tip. Unlike insect wings, the fin ray has a bilaminate structure which allows
some control of its rigidity. We shall consider this structure further in subsequent
work. Fish et al. (2006) studied experimentally a different passive mechanism for
shape change in cetacean tails, which can produce camber with desirable propulsive
characteristics. Other studies have considered the stiffness of the fish skin (Long
et al. 1996), and the fish backbone (Wainwright 2000). The special architecture of the
backbone is conjectured to allow efficient passive swimming motions under fluid forces.

On the theoretical side, Katz & Weihs (1978, 1979) also considered the heaving
and pitching of a slender airfoil in an inviscid flow. They used a rather different
formulation from that presented here. First, they solved their equations using a
coordinate transformation, which is somewhat more complicated than the approach
used here. Also, they represented the vortex wake as an array of point vortices,
rather than the continuous representation here, and consequently used a different
expression for the Kutta condition. Their results were limited to three O(1) values of
reduced driving frequency. For one frequency, they found an increase in efficiency of
flexible foils over rigid foils of up to 20 %. The results given in the present work are
new in several respects. First, we give a much more complete characterization of the
behaviour throughout the phase space of reduced driving frequency and rigidity, and
find a much wider variation of efficiency and thrust. We determine here for the first
time optimal parameters for thrust and efficiency. Also new here is the propulsive
behaviour at the asymptotic limits of the parameters, together with a theoretical
analysis of these results.

Lian et al. (2003) have undertaken high-performance computations to simulate
the performance of three-dimensional flexible flapping wings and found that passive
flexibility can delay the appearance of stall to higher angles of attack. A three-
dimensional vortex panel method was used by Liu & Bose (1997) to study the effect
of spanwise flexibility on propulsion. It was found to increase propulsive efficiency
only under a carefully-controlled time-dependent motion. Miao & Ho (2006) used a
dynamic conformal mesh to study a flexible airfoil in a heaving motion at Reynolds
numbers of O(10%). They found that efficiency increased relative to a rigid foil for
certain values of the flapping Strouhal number.

The organization of the paper is as follows. Section 2 introduces a model for
fully-nonlinear deformations of a flexible body in a high-Reynolds-number flow.
This model was used by Alben & Shelley (2008) to study the flag-flapping instability.
Section 3 specializes the model to the linearized case of small-amplitude dynamics and
in §4 to periodic dynamics. Section 5 describes the numerical method for solving the
linearized, periodic form of the equations. Section 6 gives numerical results in the two-
parameter space of dimensionless rigidity and reduced driving frequency. Section 7
analyses the results in the asymptotic regimes of small and large driving frequency
(§7.1 and §7.2, respectively). Section 8 compares the optimal parameters identified
here with dimensionless parameters from recent studies of insect wings and fish fins.
Section 9 collects the main conclusions.
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FIGURE 1. A schematic of a flexible fin of length 2L pitching at the leading edge with amplitude
6o in a steady background flow of speed U. A vortex sheet (dashed line) emanates from the
trailing edge.

2. Flexible body vortex sheet model

We model the tail fin of a swimming fish as a slender elastic filament in a two-
dimensional inviscid flow (see figure 1). The model fin is an inextensible elastic sheet
of length 2L, mass per unit length p,;, and uniform rigidity B, moving under the
pressure forces of a surrounding inviscid and incompressible fluid of density (mass
per unit area) py. The fin position is ¢(s, t), where s is arclength; —L <s < L. The
fin position evolves according to Newton’s second law as a geometrically-nonlinear
elastica with inertia (Antman 1995):

Ps0ut (s, 1) = O5(T (s, 1)8) — Bogs (k(s, 1)) — [p](s, )i (2.1)

Here T(s,t) is a tension force which maintains inextensibility, (s, ¢) is the fin
curvature, and [p] (s, ) is the pressure jump across the fin. We have assumed for
simplicity that the rigidity B is uniform, and defer a consideration of the spatial
distribution of B to future work.

For simplicity two-dimensional quantities are represented as complex numbers, so
that ¢(s, t) =x(s, t) +iy(s, t) is the fin position. Here § and 7 are complex numbers
representing the unit tangent and normal vectors to the fin, respectively. Therefore
we have § =9,¢ =€), where 6(s, t) is the local tangent angle, and 7 =iel). We
also define a ‘dot product’ of two complex numbers w; =a + ib and wy,=c +id to
be w; *wy; =ac + bd, which is the ordinary dot product of the real vectors (a, b) and
(c, d). The curvature is thus k = — 19, * 1.

The leading-edge boundary condition for (2.1) is a sinusoidal pitching motion (as
if driven by muscles in a fictitious body upstream) with angular frequency w:

C(s=—L,t)=0; O(s=—L,t)=6)cos(wt). (2.2)

The kinematics of a tail fin or bird wing are more accurately modelled by including
heaving as well as pitching (Lighthill 1969). However, our main interest here is on the
thrust as a function of flexibility. We expect the optimal rigidity for pitching to be
similar to that for pitching plus heaving, because in both cases the bending rigidity
is the key parameter which governs how the leading-edge motion is transmitted to
subsequent sections of the body against fluid resistance. In particular, adding heaving
does not alter the basic mathematical structure of the equations or the analysis which
follows in this work. However, the combination of heaving and pitching should lead
to an improvement in performance over pitching alone which is similar to that found
in experiments on rigid foils (Triantafyllou et al. 1991, 2000). In subsequent work we
shall consider combined heaving and pitching.
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Free-end boundary conditions, T =k =9,k =0, are assumed at the trailing edge
(s=0L). Scaling lengths on L, and time on 2n/w, the dimensionless fin equation
becomes

Rlatté‘ = 85(T§) - R28ss (Kﬁ) - [P]ﬁ (23)

with dimensionless boundary conditions
((—=1,1)=—1; 6(—1,1) = —6ycos(2mt), (2.4)
T(1,t)=«(1,1t) =9k(1,1)=0. (2.5)

The dimensionless parameters are:

(a) Ry =ps/psL, the dimensionless fin mass,

() R, =B/psw’L’, the dimensionless fin rigidity,

(¢) By, the dimensionless pitching amplitude.

(d) 2=wL/U, the reduced pitching frequency.

The tension is eliminated from (2.3) by integration of the s-component from s =1,
using the boundary condition T'(1,1)=0:

T(s, t)= /lf (R10,¢ + 8 — k0,(Rok))ds’. (2.6)

We simplify the problem by observing that a typical fin is composed of bone,
collagen, and skin, and has a density similar to that of water. Then the dimensionless
mass R; is of the order of the fin thickness divided by its length, which is typically
0(1072) (Videler 1993). In other words, the inertia of the fin is negligible compared
to the inertia of the fluid with which it interacts. Thus for simplicity we set R; =0.

The tail fin is coupled to the flow through the pressure jump in (2.3). The flow is
modelled as a two-dimensional inviscid flow, with vorticity in the form of a jump in
tangential velocity y along a continuous curvilinear arc. The arc consists of a ‘bound’
vortex sheet on the fin, which separates from the trailing edge into a ‘free’ vortex
sheet in the flow (see figure 1). This flow model dates to the early days of airfoil
theory (Thwaites 1987), agrees well with experiments (Didden 1979; Pullin & Perry
1980), and has been used more recently by Nitsche & Krasny (1994), Jones (2003),
and Pullin & Wang (2004).

The complex conjugate of the flow velocity at any point z in the flow can be
calculated in terms of the vortex sheet strength y by integrating the vorticity in the
bound and free sheets against the Biot—Savart kernel (Saffman 1992):

. 2n 1 y(s', 1) ,
Uy (z) —iuy (z) = 5 + i /ch+c/ Py ds’. (2.7)
The first term on the right, 2rmt/$2, is the dimensionless flow velocity at infinity,
according to the non-dimensionalization used in (2.3). Here C, is the contour
representing the fin (—1<s'<1) and C, is the contour representing the free sheet
(1 <5’ <smax)- We can express the average of the flow velocities w on the two sides
of any point {(s,t) on C, or C, by taking the average of the limits of (2.7) as z
approaches ¢ (s, t) from above and below the countours:

w1 (s :

w(S,l)—Q‘i‘znif{l mdé‘ + b(s, t), (2.8)
Ly

=g f i =

In (2.8), w is the complex conjugate of w, and the integral is of principal-value type.
On the free vortex sheet Cy, it can be shown that points ¢(s) move with velocity w
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(Saffman 1992, p. 31). This gives the Birkhoff—-Rott equation for the evolution of the
free vortex sheet:

AC(s, 1)
ot

2 1 't
(5.0)= T, + e

O ﬁpcwcf i) —t(s. 1) s, ¢(s,1)e Cp. (2.10)

We apply (2.8) also to ¢(s) on the fin, to express the kinematic condition that fluid
does not penetrate the fin on either side. In other words, the component of the fin
velocity normal to the fin equals the normal component of w:

c0,0(s,t) =n-w(s,t), L(s,t) € Cp, (2.11)

. (2, U1 (s, n)ds’
8t§(s,t)—n (_Qex 27111 -1 m

=>

=>

) +ab(s, 1), ¢(s,1) € Cp. (2.12)

When the left-hand side of (2.12) and b(s, t) are known, the general solution y (s, t)
has inverse-square-root singularities at s =41 (Muskhelishvili 1953). If we define
v(s, t), the bounded part of y (s, t), by

v(s, 1
o=
the kinematic condition becomes
zjéx 4 i ! v(s’, 1) ds’
72 J1T—52(¢(s) — ¢(s)

(2.13)

ne0,c(s, t)=ﬁ-( ) +n-b(s,t), C(s,t) € Cy.

(2.14)

We can rewrite b(s, t) in a more convenient form. The free vortex sheet consists of a
line of fluid particles which are continually advected away from the trailing end of
the fin, for r = 0. Following Jones (2003), we define the circulation as the integral of
y over the free sheet:

(s, t)= / y(s',1)ds’, —1 <5 < Smax. (2.15)

We denote the total circulation in the free sheet I (f)= [ 1, y ds’. According to the
Helmbholtz laws for vorticity conservation in two-dimensional flows, specialized to a
vortex sheet, I"(s, t) is conserved on fluid particles (Saffman 1992, p. 30):

iF(s, t)=0, seCy. (2.16)
dr

where the time derivative is a material derivative, the rate of change following a fluid
particle, which moves according to (2.10). Thus each fluid particle in C; carries the
value of circulation I'(s,t)=1"(1,¢") it has at the time ¢* when it is ‘born’ at the
trailing edge of the fin. We can reparametrize b(s, t) in (2.9) by circulation I" using

yds=dI:
I (1) da’
b(s,t) = —f({ (6.0 — (A0 (2.17)

The instantaneous total circulation in the free sheet, I, (¢), is determined by the

Kutta condition, which states that at each time ¢ the fluid velocity at the trailing edge
s = 1 is finite. In particular, y, which is also the tangential component of the jump in
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fluid velocity across the fin must be finite at the trailing edge. Using (2.13), the Kutta
condition becomes

v(l,1) =0. (2.18)

At each time ¢, (2.18) is a constraint which we use to determine I7.(¢), as described
below.

One can relate the pressure jump across the fin [p] to the vortex sheet strength
along the fin by a version of the unsteady Bernoulli equation. One writes the Euler
equations for fluid velocities at points above and below the fin, and takes the limit
that the points approach each other from opposite sides of the fin (see Saffman
1992; Jones 2003). The difference of these equations is an evolution equation for the
difference of the fluid velocities, which is y § (the normal component is zero by the no-
penetration condition on either side of the fin). The evolution equation for the vortex
sheet strength y is (Jones 2003):

Ve +0s((k —1)y) = 3 [pl, (2.19)

where t is the tangential component of the fin velocity and u(s, t) is the tangential
component of the average fluid velocity:

(s, 1) =0,¢(s,2)*8; wm=w(s,1)-5. (2.20)
The pressure jump across the free sheet is zero, which yields the boundary condition
for (2.19),

[p]ls=1 =0. (2.21)

We integrate (2.19) along C,, to determine [p] (s, ) on the fin —1 <5 < 1.

We present here the full system of unknowns and corresponding equations:

C(s,1),s € Cp,—1 <5< 1:(2.3),

v(s, t),s € Cp, : (2.14),
[p](s,1),s € Cp :(2.19) and (2.13), (2.22)
C(s,1),s € Cp, 1 <5 < Spax : (2.10),

(s, t)=T1,1"),s € Cy :(2.18).

Because the fin is nearly aligned with the flow, we neglect separation upstream of
the trailing edge, and allow the flow velocity and pressure to diverge as the inverse
square root of distance from the leading edge. The divergent pressure creates a finite
leading-edge suction on the body which is a reasonable model for the force in the
actual flow (Saffman 1992), and is a standard component of classical models for flows
past slender airfoils (Thwaites 1987).

The main quantities of interest are the instantaneous force on the fin Q, the input
power P;, (the rate of work done per unit time at the leading edge) and the output
power P,,. These are

1
0= —gv(—1)2§ +/ —[plids, (2.23)
—1
20
Pu=—Ru| (2.24)
2 2 1
=12+ pla-e, ds. (2.25)
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The first term on the right-hand side of (2.23) is a suction force due to the inverse-
square-root flow singularity at the leading edge. This is the limit of the suction force
on a leading edge of small but finite radius of curvature, in the limit that the radius
tends to zero (i.e. the body becomes sharp-edged) (Saffman 1992). Equation (2.24) is
the rate of work done to create the pitching motion, equal to the moment applied at
the leading edge —R,« times the angular velocity there. The output power is defined
as the rate of work done per unit time by thrust forces on the fin, which is the thrust
force times the velocity of the fluid stream 2m/£2. This form of P,, was used by
Lighthill (1960) and many others in the ‘Froude efficiency.’

3. Small-amplitude linearization

The general system of (2.22) becomes more amenable to analysis in the regime
of small pitching amplitude, 6y < 1. We specialize the system (2.22) to this limit by
expanding all quantities to linear order in 8,. First we linearize 5§ and 7#. We have
dx .dy

£+1$=619=1+19+0(9§), (3.1)

h=ie’=i—0+0(6;). (32)

=3
Il

Since dx/ds ~ 1 4+ O(63), all s-derivatives in (2.3) equal x-derivatives to linear order.
Thus,
A 3 82_)) 2

Recalling that R; =0, (2.6) shows that T < O(67). Thus the tension term drops out
of (2.3) at linear order. The imaginary part of the linearized beam equation with
R{ =0 is thus

0=—Ryd;y — [p]. (34)

The boundary conditions are
Ve=1=0,  9cyli=—1 = Opcos2mt; (3.5)
8xxy|)c:1 = 8xxxy|x:1 =0. (36)

Next we linearize (2.14). Using (3.1), (3.2) and the boundary conditions (2.4),
agzaapl+a/1@x+ﬂwdf=wﬁ+0w@. (3.7)
-1

Thus 9,¢ -2 =09,y + O(63)= O(6). Using (3.2), the first term on the right-hand side
of (2.14) is

2 22

which is also O(6y). The kernels (i.e. the terms multiplying y) in the principal-value
integral and in b(s, t), defined in (2.8), (2.9) are O(1). Thus the functions y they
multiply are O(6,) to balance the other O(6,) terms in the equations.

We can linearize the kernels in (2.8), (2.9) by retaining only the O(1) terms in the
kernels. On the fin, reasoning similar to that in (3.7) shows that ¢(s, ) =s 4+ O(6p).
Thus,

i (me) = —2—“axy + 0(6y), (3.8)

1 1
c(s)—¢(s) s —

-+ 0(0), —1<s<l (3.9)
s
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The left-hand side of (2.10) equals the constant background flow velocity 2m/$2 at
zeroth order. Thus at zeroth order the position of the free vortex sheet is the semi-
infinite line 1 < x < oo, y = 0. We assume the fin has been oscillating for a long time,
and thus take oo as the upper limit in x.

We assume all quantities have the same frequency as the pitching at the leading
edge (2.4). This is supported by simulations of the initial value problem, which are
very nearly periodic for small 6, (see the Appendix). In particular, the total circulation
in the sheet is periodic, I'(x =1, 1) =Re (I,e?™). I is conserved on material points
of the sheet which are advected downstream at constant velocity (2r/§2)e,. Thus the
material point at location x > 1 at time ¢ was at location x =1 at time t—§2(x—1)/(2m).
Hence, the circulation on the x-axis is a travelling wave:

I(x,t) = Re (e 0 Ne™), (3.10)
y(x,t) =8, (x,t) = Re(—i2[He "~ De™). (3.11)
Thus, b(s, t) in (2.9) becomes
1 © e—iR2('—1) .
b(x,t) = ERC(—QI—‘Q f; ﬁdx’elzm), (312)

and the linearized form of (2.14) is:
! v(x’, r)dx’
1 A1 —x?(x —x)

We linearize [p] by linearizing (2.19), as follows. Using (2.20) and (2.8), u =
21/82 + O(6y). Using reasoning similar to that in (3.7), t =9, -5 = O(6,). Thus the
linearized form of (2.19) is

0;y(x,1) —}—‘2{2 y(x,t) = +b(x,t), —1l<x<1. (3.13)

21
Yo + 5&:)/ = 0:[p], (3.14)

which shows that [p] = O(6,), consistent with the other term in (3.4).
Finally, the linearized version of the Kutta condition (2.18) is unchanged.

We present here the full system of unknowns and corresponding linearized
equations:

y(x), =1 <x <1:(34),
v(x), -1 < x <1:(3.13),

(3.15)
[p](x), =1 < x <1:(3.14),
Iy : (2.18).

Because the position of the free sheet is known, (2.10) in system (2.22) is no longer
needed.

4. Periodic case

As stated previously in deriving the linearized form of the free vortex sheet, (3.10),
we assume a periodic Ansatz for all quantities, including

y(x, 1) = Re(Y(x)e*™); v(x, 1) = Re(V(x)e*™); y(x, 1) = Re(G(x)e*™); a1
[p] (x, 1) = Re(P(x)e?™); I'(x = 1, ) = Re(Ipe>™). (1)
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In this section we write the system of equations for the purely spatial terms on the
right sides of (4.1). Equation (3.4) yields

0=—Ry3'Y —P. (4.2)
The boundary conditions are
Y|i=—1=0,0,Y],=—1 = bp; (4.3)
Ox Y li=1 = Oxux Y]i=1 = 0. (4.4)
Equation (3.14) yields
2niG(x) + 2ERBXG()C) =9, P(x) 4.5)
with boundary condition
Pl,=1 =0. (4.6)

The linearized kinematic condition (3.13) yields
1 ! V(x')dx'

= +
2t Jop J1—x2(x —x')

B(x), —-l<x<l1. (47)

. 2
2miY (x) + gaxY(x) =

QFO 0 efi.Q(x’fl) )
B(x) = — 4.
() 2n /1 x—x' dx (48)
B(x) = ILE(x). (4.9)

We have defined the function in B(x) which Iy multiplies as E(x), an exponential
integral function.

5. Numerical method

We now give our numerical method for the solution of the spatial terms in the
periodic form of system (3.15), which consists of (4.2), (4.5), (4.7) and the Kutta
condition (2.18) (i.e. V(x=1)=0). Although the system is linear, the matrix is
somewhat complicated to set up. Thus we solve it numerically using an iterative
method known as Broyden’s method (Ralston & Rabinowitz 2001), which is somewhat
simpler to code, and which converges rapidly since the system is linear. We write our
system of (4.2), (4.7), (4.5) and (2.18) in the form

F(a) = 0. (5.1)

The unknowns a are values of V (defined in (4.1)) and 9,.Y on m 4+ 1 Chebyshev—
Lobatto nodes in —1 < x < 1, and the total circulation Iy:

aj=V(x;), j=1,...,m+1, (5.2)
Ajyme1 = 0 Y(x5), j=1,...,m+1, (5.3)
am+3 = To, (54)
xj=—cos(j—l)m/m, j=1...,m+1. (5.5)

The values F in the corresponding 2m + 3 linear equations are computed as follows.
We start by integrating 0., Y (x;) twice to obtain the body deflection Y (x;) using the
‘clamp’ boundary conditions (4.3).

We compute the integral in (4.8) prior to beginning the iterative process. During
the iterative process, we multiply the pre-computed integral by I to obtain B(x;).
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Equation (4.7) can be solved for V using a Chebyshev expansion. We define

f(x)=—B(x)+2ni¥(x) + %&Y(x) (5.6)

and approximate f by a finite Chebyshev series, which converges rapidly for smooth
functions:

Fla) =) ficos(ke). x =cos(9). (57)
k=0
The solution V is (Mason & Handscomb 2003)

V(x)=2)  fisin(kg)sin(¢) — fi — 2fo cos(9) + C. (58)

k=1

The constant C is determined by the conservation of circulation (Kelvin’s Theorem)
for a flow started from rest:

1
V(x) 2mit 2mit Io
———e™Mdx + [pe™ =0=C = —. 5.9
i 0 - (59)
Using (5.8) we can write the Kutta condition (2.18) as
I
—fi=2fo+ =0, (5.10)

Having computed each of the quantities in (4.7), we now place it in our system of
equations:

Fi(a) = V(x;) =2 f;sin(j¢i)sin(¢r) + f1 + 2fo cos(e) — % i=1,....,m+1.
j=1
(5.11)
Next, we form the terms in the beam equation (4.2). We compute P by integrating
(4.5) with boundary condition (4.6). The inverse-square-root singularity in y and G
at the leading edge x = —1 also appears in P, and thus in 9, Y through (4.2). This
does not pose a significant problem, since we do not evaluate (4.2) at the leading
edge. We adopt the standard approach of including in this system of equations
(4.2) evaluated on the interior nodes only. Since (4.2) is second-order in 9., Y, we
replace the equations on the two boundary nodes xi, x,,+; with the two boundary
conditions 9y Y (X,,11) = 0yx Y (xny1) =0. The equations we add to our system of
nonlinear equations corresponding to the beam equation are then

Fiym(a) = —RDX(0 Y (x)) + —P(x;), j=2,....m, (5.12)
F2m+1(a) = BXX Y(xm+1), (513)
Fopia(@) = Do Y (x41). (5.14)

Here D! and D? are the discrete differentiation matrices of first and second order on
Chebyshev-Lobatto nodes. They are dense matrices, but because the number of nodes
m+ 1 is typically small (~0(10?)), multiplication by these matrices is computationally
inexpensive. A uniform discretization would allow sparse differentiation matrices, but
then it would need to interpolate from data on a uniform mesh to data on a Chebyshev
mesh, which increases the condition number of the Jacobian matrix 9 F;/da;, slowing
convergence. The last equation in our nonlinear system is the Kutta condition (5.10):

I%
Fanisla) = —fi =2fo+ . (5.15)
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FiGure 2. For the flexible fin pitching at the leading edge in the linearized regime (6p =m/720):
time-averaged output power (P,,), time-averaged input power (P;,), efficiency n= (Py,)/
(P;,), and maximum tail deflection |Y(1)| and circulation | I, over a period. All quantities are
plotted versus bending rigidity R», for four values of §2: 25 (a), 6 (b), 2 (¢) and 1 (d).

Having computed the solution a at each time step, we can compute the time-
averaged force, input power and output power. Inserting the linearized periodic
expressions (4.1) into (2.23)—(2.25), and taking the average over one period, we obtain

1
(Q) = _1n6|V(—1)|2—|—/_1—P(x)8xY(x)dx, (5.16)
(P} = 2 m(0 Yo 2060, (5.17)
2 !
i) = =—|V(—=1)? —Pd,Y(x)dx. 5.18
(Pas) = 4V + [ —PaY()dx (5.18)

6. Results

We now examine the fin solutions in the limit 8y < 1 as functions of the two key
parameters: flapping frequency 2 and rigidity R,. In figure 2, we set 6y =m/720 and
plot the quantities in (5.17)—(5.18) for four values of £2, decreasing to unity, and for
many decades of R,. In addition, we have plotted the tail end deflection |Y (1), and
the magnitude of the circulation shed by the fin, |I}]. In figure 2(a) (£2 =25), we find
a series of sharp resonance-like peaks in the response as a function of R, which reach
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FiGURE 3. For the flexible fin pitching at the leading edge in the linearized regime (6y =r/720):
The values of rigidity R, corresponding to maximum time-averaged output power (P,,),
maximum efficiency n= (P,,)/(P:) and zero output power, as a function of reduced pitching
frequency £2. Also plotted are a range of typical values from studies of the hawkmoth Manduca
Sexta (solid box), and the bluegill sunfish Lepomis Macrochirus (dashed box). See §8 for details
on these studies.

plateaux for R, 2 103, where the rigid-plate solution is achieved. In addition, we find
the following power-law scalings of the peaks for R, < O(10%):

Pin ~ Rg‘gs’ Pout ~ Rg'%’ |Y(1)‘ ~ Rg?’S’ |F0| ~ joS’ (61)

The efficiency decreases from near unity for R, <1 to 41% for R, > 1 in figure 2(a).
In figure 2(b, ¢, d) we decrease £2 to 6, 2 and 1, respectively, and plot the same
quantities. We again find a series of peaks, though as §2 decreases, the peak amplitudes
decrease, and half-widths increase, characteristic of increased damping in a resonant
system. We note, however, that there is no energy dissipation in this system, unlike the
classical damped, driven harmonic oscillator. However, mathematically our system is
analogous to a damped resonant system, as explained in §7.

We have set the lower limit of R, in these plots to the values below which the
thrust power (P,,) becomes negative (ie. thrust becomes drag). We shall comment
on the behaviour below this transition subsequently. Near these lower limits of R,
for thrust, the efficiency n peaks and then decreases sharply to zero. The peak values
of n decrease with decreasing £2.

Similarities between all four panels of figure 2 are that the power-law scalings of
the peaks are the same, and that the transition to the rigid-plate solution occurs at
approximately the same value of R,.

It can be seen that the peaks in (P,,) coincide with peaks in the amplitude at
the trailing edge of the fin. These coincide also with the peaks in amplitude at other
locations along the fin, although with different temporal phases at different locations.
In a more approximate localized theory of fluid forces on a body with a prescribed
travelling-wave motion, Lighthill (1960) predicted a strong dependence of thrust on
the trailing edge deflection in particular.

We have scanned over a wide range of §2, and at each £2 identified the values
of R, which correspond to the maximum (P, ), maximum efficiency (P, )/ {Py),
and the thrust-drag transition (zero (P,,)). These values are plotted in figure 3. At
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FIGURE 4. The sin(¢)- and cos(r)-components of the fin shapes for Ry <1, at £2 = 25. The
shapes are arranged so that their horizontal midpoint is at the corresponding value of R;.
Upper curves: solid line, cos(¢)-component; dashed line, sin(¢)-component. Lower curves: solid
line, time-averaged output power; dot-dashed line, time-averaged input power.

large reduced frequencies, the optimal R, for thrust is approximately 60. At smaller
frequencies, the optimal R, for thrust tends abruptly to oo at £2 =0.27, yielding the
rigid plate solution. As §2 approaches this value from above, the uppermost peak in
the plots of figure 2 becomes shallower and shallower, and finally transitions to a
monotonic rise with R,.

For large frequencies 2, the values of R, for maximum efficiency drop sharply, as
Ry~ 273, At lower £2 the maximum efficiency R, increases sharply to co at £2 =0.22.
The values of R, corresponding to the thrust—drag transition also increase to oco. In
other words, there is a lower bound on §2 below which no thrust can be generated
by a flapping body of any rigidity. As studies on rigid bodies have found, a body
must flap at a certain speed relative to the speed of the oncoming stream to produce
thrust (Vandenberghe et al. 2004; Alben & Shelley 2005; Godoy-Diana, Aider &
Wesfreid 2008). Scaling arguments have predicted high efficiency in the linear regime
(Sparenberg 2002) and here we find that efficiency is near one when thrust tends to
zero. In other words, efficiency is high when circulation || is small, so little energy
is put into the wake.

We have focused so far on integral measures of the fin behaviour. We can
understand the structure of the solution in more detail by examining the spatial
behaviour of solutions on the fin. We begin by examining the fin shapes corresponding
to the peaks in the small-R, power-law regime in figure 2(a). In figure 4 we superpose
the sin(2m¢)- and cos(2nt)-components of three fin shapes above the plots for input
and output power. The values of R, for these shapes are directly below their horizontal
midpoints. All of the shapes have been rescaled to have a common amplitude. The
most notable feature is a decrease in wavelength of the solutions with decreasing R;.
Such behaviour is typical of resonant solutions to the beam equation with decreasing
rigidity.

In figure 5 we plot several fin shapes between peaks in R, for a higher range of
R, in figure 2, near the four highest peaks in response. All of the shapes have been
rescaled to a common amplitude. As the shapes move from peaks to troughs the
relative balance in fin response shifts from the sin(2m7)-component at the peaks to the
cos(2nt)-component — the driving component — at the troughs. At the highest peak
we see that the optimal-thrust shape has curvature of a single sign, concentrated at
the leading edge.
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FIGURE 5. The sin(2nt)- and cos(2nt)-components (dashed and solid short lines respectively)
of the fin shapes for maxima and minima of thrust versus R,, at £2 = 25. The shapes are
arranged so that their horizontal midpoint is at the corresponding value of R,. The dashed
curve running across the figure is the time-averaged output power.

102 A z

10723 - “““““

i i i i i i
102 102 10 100 10%% 10°
Ry

FIGURE 6. The sin(2nt)- and cos(2nt)-components (dashed and solid short lines respectively)
of the fin shapes for £2 = 2. The shapes are arranged so that their horizontal midpoint is
at the corresponding value of R,. The long curves are: solid, time-averaged output power;
dot-dashed, time-averaged input power; dashed, peak deflection at the trailing edge of the fin
over a flapping period.

In figure 6 we plot fin shapes corresponding to the smaller value of 2 = 2, with
results given in figure 2(c). The peaks no longer correspond as clearly to dominance
of the sin(2nt) components of response. We show also fin shapes for R, below the
thrust-drag transition R, ~ 107!, Apart from a region near the leading edge, we find
convergence to a particular fin trajectory, apart from a scaling of overall amplitude as
R;/ 3 (In figure 6 the shapes have been re-scaled to a common amplitude.) This power
law is close to the power law |Y(1)] ~ R93% above the thrust-drag transition. However
the solutions are quite different on either side of the transition. As R, decreases
from oo in figure 6, the wavelengths of the shapes decrease until the thrust-drag
transition. As R, decreases below this transition, solutions have a common shape
apart from the scaling of overall amplitude. This change corresponds to a change
in the dominant balance in the fluid—body equation, which gives rise to a similarity
solution as described in §7.1.
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In summary, the main observations of this section are

1. The appearance of resonant-like peaks in response at particular values of fin
rigidity R,.

2. The damping of the peaks with decrease of £2.

3. The power-law scalings of response with rigidity R.

4. The appearance of shapes with characteristic wavelengths which decrease with

5. The scalings of the zero-thrust and maximum efficiency values of R, at large £2.

6. The different phase behaviour of solutions at peaks and troughs in response.

7. The approach of efficiency to one for small R,.
We shall now attempt to understand the first four of these observations by an
approximate analysis of solutions to the equations. Along the way we shall present
the solutions in the limit of small £2 and small R,, which are self-similar.

7. Analysis

Here we rationalize some of the main observations in the previous section by
examining the dominant balances in the system of equations in asymptotic limits of R,
and £2. First, we use (5.10), (5.6), (4.8) and (4.9) to express I explicitly in terms of Y':

ro_n/ L+x ( B(x') + 2miY (x )+2;8x/Y(x’)> dx’ (7.1)

<2n1Y( )+ 98 Y(x)) (7.2)

(7.3)

1 1—x

This shows that I is a weighted integral of the flow velocity normal to the fin,
divided by a fixed function. We denote this functional by J.

It is helpful to combine the system of equations (4.2), (4.5) and (4.7) into a single
equation in terms of Y. Combining (4.2) and (4.5) gives

. 2
0= —R,3%Y — 2miG(x) — gaxc(x), (7.4)
where we have used the uniformity of R,. We can write (4.7) as
2 1 2n
QY (x) + gaxm) — SH(GW) + E(x)J <2mY(x) + 15, Y(x)> (7.5)

where (G (x)) is the finite Hilbert transform,

1 l
H(G(x)) = % j’[ 1 (fixx),) d’. (7.6)

We invert J# in (7.5) to solve for G, and plug the resulting expression into (7.4):

.2 . 2
—Ry)3}Y — <2m + ga) {2%—1 <2mY(x) + gaxY(x)

— E(x)J (2TtiY(x) + i;taxY(x)>>] =0. (1.7
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FIGURE 7. Fin shapes for £2 =0.063 and twenty values of R, ranging from 10~* to 10~!. The

axes give the horizontal and vertical distances from the leading edge, divided by R, '3 The
solutions collapse onto a similarity solution.

The boundary conditions are

Y|x:—1 = O, axY|x:—1 = 907 (78)
axxY|x=1 = 8xxxY|)c=1 = Oa (79)
RZaxxxxY|x=l = _P|x=1 =0. (710)

Although complicated, (7.7) is linear in Y.

7.1. Small flapping frequency

We consider first the limit of small £2, the steady case of (7.7), which consists of a fin
held oblique to and bent over in a steady flow. Here (7.7) becomes

—R,3°R — <§’;a> {2%—1 (f;axR(x) — E(x)J (i;axR(x)»] =0. (7.11)

This recalls a similar problem in which a fibre is held at its midpoint at a 90° angle
to a steady inviscid flow. Solutions for small R, collapsed onto a similarity solution
at the midpoint with length scale ~R§/ 3 (Alben, Shelley & Zhang 2002, 2004). The
present problem differs in that the body is nearly aligned with the flow at the leading
edge, and that therefore the wake can be modelled as a one-dimensional vortex
sheet instead of a two-dimensional wake behind a bluff body in the earlier problem.
Here we again find a similarity solution with a shrinking length scale ~R;/ ? near
the leading edge. For R, < 1, a dominant balance between the first two terms (with
highest x-derivatives) on the left-hand side of equation (7.11) predicts the length scale
X:
R R
X5 T X222
In figure 7, we plot the fin shape for £2 =0.063, with lengths divided by Ré/ 3 The
plot shows that as we vary R,, and consider the fin deflection at a fixed value of
(x+ 1R, 13 the fin deflection scales as Ry 3 As R, increases to O(1), the similarity
solution transitions to a straight fin oblique to the flow.

R> = X ~ R)PQ27%3, (7.12)
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FIGURE 8. The maximum values and half-widths of the largest resonant peak at Ry =R) is
plotted for §2 ranging between 14 and 140. The maxima are the values of the fin deflection at
the trailing edge, |Y(1)|. The half-widths € are the distance between R; and the value of R,
where |Y(1)| equals 0.995 times its value at R;. The maxima scale as £2 and the half-widths
scale as 1/£2.

7.2. Large flapping frequency

We consider here the case where £2 is large, corresponding to figures 2(a) and 4. In
figure 8 we plot the values of |Y(1)| at the first resonant peak (R, =~ 60) versus £2.
As £2 becomes large, we find that the peak values diverge as §2, and the half-widths
shrink to zero as 1/£2.

In analogy with damped resonant systems, such as the linear beam or string in
air with internal damping (Hauser 1965), the peaks seem to correspond to damped
resonances, with damping ~1/£2. Put differently, the response is proportional to the
reduced pitching frequency.

We obtain a guess for the form of the resonant fin shapes by observing from
figure 4 that wavelengths become shorter as R, tends to 0. In figure 9 we plot the
shapes corresponding to the first eleven peaks, and find that as k increases, they are
well-approximated by sinusoidal functions on the interval [0, ], with wavenumber
increasing by one with each peak.

To understand the distribution of resonant values of R, it is convenient to make the
boundary conditions homogeneous (Hauser 1965). This can be done by subtracting
from Y(x) in (7.7) the steady solution R(x) that was found in §7.1, which satisfies
the same boundary conditions as Y. Subtracting (7.11) from (7.7), we find that the
difference Z(x) =Y (x) — R(x) satisfies

2 2
—RZ — <2ni n £a> [z,yf—l (mzm n gaxzm

— E(x)J <2niZ(x) + i;aXZ(x)»] = S(x). (7.13)
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FIGURE 9. The fin shaPes corresponding to the first 11 resonances in R,, decreasing from R, =
60 to Ry,=6.5 x 10°. Here £2=420. The shape amplitudes are scaled to have uniform
absolute value at the trailing edge, which removes the overall growth [Y(1)|~ R3*. The
shorter-wavelength shapes are well-approximated on the interior of the interval by sinusoidal
functions, which increase by one in wavenumber with each resonance. Only the (dominant)
imaginary part of Y in (7.7) is plotted. The real part shows similar behaviour.

Equation (7.13) is the same as (7.7) but with the inhomogeneous term S(x), and
homogeneous boundary conditions. S(x) consists of the remainder terms when
subtracting (7.11) from (7.7):

S(x) = —(2mi) {2%1 (27ti(—R(x)) + %ax(—R(x)) — E(x)J <2ni(—R(x))

+ Ztax(—R(x)))ﬂ - %“ax (277" (2mi(—R(x)) — E(x)J Qmi(—R(x))))]. (7.14)

In the limit of large £2, (7.13) simplifies to:
—Ry A (3]Z) + 817 Z(x) — E(x)J (2miZ(x)) = S(x), (7.15)
with boundary conditions
Zlier1 = 0 Z|i=—1 = 0; Oxx Zli=1 = Oxx Zx=1 = Oxxrx Zlx=1 = 0. (7.16)

The right-hand side S(x) is a fixed function depending on R, and §2 but not Z. A
resonance is obtained for values of R, such that the homogeneous part of (7.15)
(the equation with right-hand side equal to zero) has a solution. In the limit that R,
approaches such a resonant value, the left-hand side would approach zero, except
that it must equal the fixed right-hand side. This is only possible if the amplitude of
Z diverges.

We can now determine the asymptotic distribution of the resonant values of R,
when R; is small by searching for an approximate solution to the homogeneous part
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of (7.15). We expand Z as a Chebyshev series,

Z(x) = zjcos(j¢); x = cos(¢). (7.17)

j=1
We can express the fifth x-derivative in (7.15) in terms of ¢-derivatives:
105¢*  90c* 9 105¢*  55¢] ., 45¢> 10
& T |%t | 5| %
10c 1

4 5. _ o
+s—68¢—s—58¢, c=cos¢,s =sin¢g. (7.18)

We insert the expansion (7.17) into each of the three terms on the left-hand side of
(7.15). For the first term, we apply the differential operator (7.18). We expand 9>Z in
a sin series, and obtain integer powers of j up to five multiplying sin j6, for each j.
Multiplication by the sin and cos prefactors in (7.18) cause the jth coefficient in the
sin series for 3°Z to be a linear combination of Zj—13, Zj—12, - - - » Zj—13, but the highest
power is still a fifth power. Taking the Hilbert transform of 37Z in (7.15) changes
the sin series to a cos series. For the second term on the left-hand side of (7.15), we
simply multiply the cos series for Z (7.17) by 8m%. The third term on the left-hand
side of (7.15) is a weighted integral of Z (7.3), which integrates to zero against all
modes z; for j higher than 2.

In terms of the modes z;, j higher than 2, we can disregard the third term, and
(7.15) becomes

13
—Ry Y zjuPl(j)+8mz; =0,  j=3...n (7.19)

k=—13

where P?(j) is polynomial of up to fifth degree in j. The resonances are the values
of R, corresponding to non-zero solutions {z;}. For large j we therefore expect a
resonance when R,j> ~ const. In figure 10 we plot the values of R, for the first 100
resonances. At larger values of j we find the expected scaling Ry ~ j .

To determine the peak values of fin deflection |Y (1), circulation |Ip|, and input
and output power shown in figure 10, we must consider their dependence on £2. We
therefore turn now to the damping terms in (7.13) in the limit of large 2, retaining

the lowest order terms in 1/£2:
Ari
—Ry°Z + 81 (Z(x)) + g (0. N (Z(x)) + A0, Z(x))
: 2
— E(x)J <2n12(x) n [;EGXZ(x)) +S(x). (7.20)

We first explain the £2 scaling of the resonant peaks and the 1/£2 scaling of
their half-widths, shown in figure 8. At a resonant value of R, =Rj, the first two
terms on the left vanish. The balance between the third term and the right-hand
side implies Z(x)~ £2, so the amplitudes of the resonant peaks grow linearly with
£2. The half-widths of the resonant peaks can be estimated by inserting R, =R, + €
into (7.20), and finding what perturbation € makes the sum of the first two terms
comparable to the third (damping) term. At R;, the first two terms cancel, which leaves
—€0;Z ~(4mi/$2) (0,4 (Z(x)) + # '3, Z(x)). Thus the half-widths of the resonant
peaks are e ~C/S2.
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FiGUre 10. For the first 100 resonant peaks in R, at £2 = 420, the values of dimensionless
rigidity R, trailing-edge deflection |Y(1)|, circulation |Ip|, input power (Pi,), output power
(P,us), and efficiency 5. The values are plotted versus the index of the resonance. The values of
rigidity R; (crosses) are plotted with the lines corresponding to power laws ~ k=4 k=, k=6, A
good fit is obtained for large k by the k= line. The trailing-edge deflection |Y|,— (asterisks)
is plotted with fit lines ~ k=2, k=3 and falls between these lines. The circulation I" (circles) is
plotted with fit lines ~ k=3, k~* and falls between these lines. The inﬁput and output power
(squares and plusses, respectively) are plotted with fit lines ~ k=, k~® and both are best fit
by the k> line for large k. The efficiency, which is the ratio of the two, thus approaches a
constant value for large k.

Having explained the distribution of resonances with respect to R,, and seen that
the fin shape Y at each resonance corresponds to an approximately sinusoidal function
with wavenumber k increasing by one, we now discuss the scaling of quantities in
figure 10 with k. At a resonance, the first two terms of (7.20) cancel. For Z ~ sinkx,
the third term in (7.20) scales as kZ, while the dominant term on the right-hand side is
an integral of Z (the operator J), which scales as C/k for a constant C. This balance
of terms predicts Z~ Ck—2. We note that R is sub-dominant to Z at a resonance,
since R remains bounded. Considering ¥ = Z 4 R, we thus expect Y to show the same
dependence on k as Z. Figure 10 shows that |Y(1)| ~k* where —2 > « > — 3, which is
a somewhat faster decay than predicted by this argument. In this argument we have
neglected the function E(x) multiplying J, which affects the balance of the sinusoidal
modes and the function S(x).

Given the scaling of Y, we expect that |I| should scale as Y/k, from its expression
as an integral of Y in (7.2). Figure 10 shows this to be approximately correct. Figure 10
also shows that the input and output power scale as k. This can be explained by
expressing both quantities as products of R, with functions of the shape of the fin at
the driving end. The input power in (5.17) already has this form. The output power
in (5.18) can be put in this form by first noting that the second term on the left-hand
side of (5.18) is dominant over the first term (the leading-edge suction). By inserting
R,0%Y for P in the second term (using (4.2)), and integrating the term by parts,
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we obtain

1 1
/ —R,3%Yd,Y dx = [—RQagya,CY]l_1 +/ Ry3}Y3%Y dx (7.21)
—1 —1

- R (;(aﬁy)z + eoafy) (7.22)
where we have applied the boundary conditions (4.4) to obtain the second equation.
We have already found that R, ~ k3. It turns out that the shape terms at the leading
edge are nearly constant with respect to R,. Thus P;, and P,,, inherit the k> scaling
of R,. Consequently the efficiency is O(1) for large k. In (6.1), the scalings of the peaks
of P, and P,,, are somewhat slower than linear in R,. However, these exponents are
based on just the first several peaks. Figure 10 shows values at the first 100 peaks
and gives a more accurate estimate of the asymptotic scalings: P, ~ R, and P,,; ~ R,
at small R,.

Combining the trailing-edge scaling |Y(1)| ~k with those for input and output
power, we find that P, and P,, ~|Y(1)]?, which is to be expected in the linearized
theory, where power is a quadratic function of body shape.

x=—1

—5/2

8. Comparison

In §6, figure 3 we have plotted the optimal values of R, versus §£2 for maximum
thrust power and maximum efficiency. Here we give data for some typical fish fins
and insect wings. Relatively few studies have measured the rigidity of these structures.
We focus on two organisms for which the values of R, and §2 can be computed from
studies which have measured the rigidity and kinematics of thrust-bearing appendages.

Combes & Daniel (2003b) measured the chordwise bending rigidity in wings of
the hawkmoth Manduca Sexta. Flexural rigidity is highly non-uniform, decreasing by
about an order of magnitude from the leading edge to the trailing edge. We take the
value of flexural rigidity measured at the leading edge, B=10"-2 x 107®* N m? in
10 measurements of male forewings. The area density p, of the fluid is 1.2kg m™
(air in normal atmospheric conditions) times the span of the wing, 0.04 m. The chord
length of the wing is L =2 x 102> m. The typical flapping frequency is w = 21t x 26 Hz.
Willmott & Ellington (1997) gave the same w, and found that it varies by less
than 10 % over a range of typical flight speeds U =0.4 — 5.7ms~'. Combining these
parameters in the definitions of R, and £2 above (2.6), we find R, =0.49 — 2.5 (with
the range inherited from B), and £2 =0.57 — 8.16 (with the range inherited from U).

We have delineated this range of (£2, R,) space as the solid box in figure 3.
We find that the rigidities are about two orders of magnitude below the optimal
values for thrust power, and intersect the values for optimal efficiency. The data of
Combes & Daniel (2003b) also show that spanwise rigidity is one to two orders of
magnitude higher than chordwise rigidity, and hence closer to our optimal thrust line.
Spanwise bending may be more important for take-offs, particulary in ‘clap and fling’
mechanisms (Ellington 1984), than in steady flight.

The bluegill sunfish has been the subject of numerous studies of swimming
kinematics by Lauder and others (Shadwick & Lauder 2006). Recently the bending
rigidity of fin rays in the pectoral fin have been measured (Alben et al. 2007)
as B=10"Nm?’ The area density p, of the fluid is 917kg m— (fresh water at
room temperature) times the span of the fin, 0.04 m. Typical swimming speeds are
U =0.054 —0.18 ms~!, which scales roughly in proportion to the fin beat frequencies
w =21 x1—2 Hz (Gibb, Jayne & Lauder 1994). Combining these parameters, we find
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R, =0.017 — 0.067 (with the range inherited from w) and £ =1.4 —9.3. This range
of (£2, R,) is shown by the dashed box in figure 3. We find again that the values of
R, are well below those for optimal thrust. We note that in the bluegill sunfish the
pectoral fin is used for high-efficiency, low-speed swimming, while the tail fin is used
for fast-burst swimming.

For both the hawkmoth and bluegill sunfish, the kinematics involve considerable
heaving as well as pitching, but as stated previously, we expect the optimal flexibility
for pitching to be similar to that for heaving-plus-pitching in the model. Furthermore,
three-dimensional geometry, kinematics and flow effects are important for both
organisms, as well as effects due to large-amplitude motions, such as leading-edge
separation. We therefore do not expect agreement with our model closer than the
level of order of magnitude. However, we find that an order-of-magnitude comparison
gives a useful context for our results.

9. Conclusions

We have presented a new formulation of the motion of a flexible body in the
presence of vortex sheets, building on the work of Jones (2003) and Alben & Shelley
(2008). We have used this formulation to study propulsive forces generated by a
flexible body pitched periodically at the leading edge in the small amplitude regime.
We find that the thrust power generated by the body has a series of resonant
peaks with respect to R,, the highest of which is the optimum for thrust power
and corresponds to a body flexed upwards at the trailing edge in an approximately
one-quarter-wavelength mode of deflection. Subsequent peaks correspond to higher-
wavenumber modes of the fin, which are approximately sinusoidal. The size of the
peaks is proportional to reduced pitching frequency 2, and their half-widths scale as
1/82. The optimal efficiency approaches 1 as R, becomes small. As R, becomes large,
the efficiency decreases to 30-50 % depending on £2. The optimal flexibility for thrust
power increases from R, =~ 60 for large 2 to R, =00 (a rigid body) for 2 =0.27. For
£2 < 0.22, only negative thrust power, i.c. drag, is possible.

We have been able to derive the power-law scalings by analysing the fin as a resonant
system. In the limit of small 2, we have steady solutions which are self-similar at the
leading edge in the limit of small R,. They collapse onto a single shape which is some-
what like a reed bent in a steady wind. In the limit of large £2, we find that the distribu-
tion of resonant rigidities is R, ~ k=, corresponding to fin shapes with wavenumber «.
Corresponding power laws are P, ~k—> ~ Ry, P, ~k— ~ R,, trailing-edge deflection
Y (1)|~k=2~ R34, and shed circulation strength |I| ~k~3 ~ R9®. The height and
half-widths of each resonant peak are shown to scale as £2 and 1/52, respectively.

For comparison, we have computed the range of R, and §2 from available data
on the hawkmoth forewing and the bluegill sunfish pectoral fin. We find that the
rigidities are closer to the maximum efficiency values than to the maximum thrust
values of the model. The kinematics and geometry of these systems differ from the
two-dimensionality we have assumed.

Appendix. Comparison of full model and linearized periodic model

Here we give a verification that we have correctly derived the linearized, periodic
version of the fully nonlinear problem in §2. In figure 11 we compare the results of
fully nonlinear simulations of the initial value problem with the periodic problem
described in §4. We plot the trailing-edge deflection y., and the circulation I
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FiGURe 11. Comparison between the full and linearized models, with 6, ==/720. The values
compared are the maximum vertical deflection at the trailing edge ymax, and the maximum of
the circulation I,x, over periods 5 to 10 after startup for the full model, and over the period
of the periodic model. Values for the full model are plotted with crosses and values for the
linearized model are plotted with circles. Panels (a) and (b) correspond to £2 =4.2, and panels
(c) and (d) correspond to 2 =1.4.

for two values of 2 over many decades of R,. This comparison provides a check
that we have correctly linearized the problem, and that in particular the semi-infinite
vortex sheet wake assumed in §2 is a good approximation to a finite sheet in the fully
nonlinear initial value problem. We shall give further details of the fully nonlinear
problem in a subsequent work.
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